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Introduction: (Multi)Collinearity

Multicollinearity captures the extent to which pairs or groups of EHS vanables move together

Omitted Variable Bias/Tmpact (Endogeneity): It plays a role in driving omitted variable impact/bias
(endogeneity) ... recall the previous discussion.

SRF interpretation of MLR coefficients: It can wreak havoc with the ceteris paribus imterpretation of MLR
coefficients. . Does it really make sense (when interpreting coefficients) to hold other things constant when
things are moving together closely?

Standard Errors: It impacts estimated standard errors and the precision with which parameters have been
estimated. (Greater collinearity leads to higher standard errors (and smaller t-stats) and less precision in
estimation.

Wacky results: And perhaps most insidiously, 1t can lead to wacky estimated coefficients, which in turn could
very well lead the researcher astray. .. to focus on less important explanatory factors.

Explanatory power: Less collinear explanatory varable candidates plausibly offer more independent explanatory
power to the EHS, perhaps making them more attractive candidates for inclusion in a MLR analysis.



The Collinearity Regressions

» Collinearity regs: Regress each RHS variable on the other RHS variables in the model

« There are two collinearity regs for the following MLR model: reg wk1 wk2 and reg wk2 wk1

MLE Model Collinearity Hegressions
(1) (2] (3)
rtotgross wkl wk2
wkl -0.0120 0,022 %*%
(-0.4a) (249,91)
wkZ 4,53g%=*= 1.673%%%
(95.87) (24%,.891)
CONS 0.401 -0.178 0.585%*%
{(1.74) (-1.895 {(17.735)
H 2114 2114 5114
B-3q 0.8E7 0.873 0.873

t =tatisztics in parentheses
* p<0.05, ** p<0.01l, *=** p<0.001



Multicollinearity with Two RHS Variables: Correlation and R?

e Correlation

= If there are just two RHS variables in the MLR model, then an obvious measure of
collinearity would be the correlation of the two variables, which captures the extent to
which the two variables are moving together in a linear fashion.

e Coefficient of Determination - R?

= Alternatively, since we know that R* is also correlation squared with SLR models, we

could just as easily use the R*'s from the two collinearity regression above to measure
the extent to which the two variables, wk1l and wk2, moved together in a linear fashion.

Remember that -1< p<1 and 0< pxzy =R?<1... so R? reflects the magnitude of the
correlation, but not the sign.

A

e Both of these approaches will give you effectively the same metric. But they differ in one
very important respect: By definition, the correlation concept can be applied only to pairs of

explanatory variables. In contrast, the R* from the collinearity regression approach can be

easily extended to MLR models with more than just two RHS variables. And so that's what
we do to measure multicollinearity.... we employ R* from the collinearity regression.



... With Three or more RHS Variables: Rjz

We call the R-sq's in the collinearity regressions the R-squared j measures of collinearity, Rj2 , Where
the j index tells you which RHS variable, X;, is the dependant variable in the collinearity regression.

In the following example, wk2 is the most collinear explanatory variable since the R?in Model (3) is

.959 (which tells us that 95.9% of the variation in the wk2 variable can be explained by a linear
function of the other two explanatory variables, wk1 and wk3).

MLE Model Collinearity Hegressions

(1) (2] (3] (4}
rtotgross wkl wk?2 wk3
whkl 0.540%**= J.2gl=*=* —0.1]15%=*=
(21.38) (111.42) [-34.25)
wh2 0.745%*= 2.3gl%** I
(9.79) (111.42) (131.20)
wk3 4 . 7TE*E= —1l.1dg**=* J.B73=*=* m
(59.84) (—34.25 (131.20) j
_cons —-0.60]1*= 0.110 0.0817+ 0.28T%*=
(—2.684) (1.07] (2.40) (2.91)
) 7730 T30 7730 7730
B-sq 0.%921 0.386 0.959 0.908

t =tatistica in parentheses
* p<0.05, ** pc0.01, #**% pc0.001



Variance Inflation Factors (VIFs): Easily generate Rjz

. Ied rtorgross wkl wkZ wk3

Source | S5 dz M3 Number of obs = 1,730
————————————— +---— Fi3z, 772q) = 30052.55
Model | 27234043.1 3 9078014.37 Prob » F = 0.0000
Rezgidual | 2333503.5¢ 7, T8 302.0713% BE-=zguared = 0.8921
————————————— +-—————— e ————————— Adq R-sgquared = 0.921
1 Total | 25567846.7 7,729 3825.57209 Root MSE = 17.38
: — i rtokgrass | Coef Std. Err t P>t [93% Conf. Interwval]
B e e i o o o e . e e + ________________________________________________________________
wkl | .5403215 0253012 21.38 0.000 LA907242 .58991487
1 wke | . 7447423 0760305 .79 0.000 . 25955843 89390048
=] wk3 | 4.77794 07583893 55.B4 0.000 4.821432 4.834447
4 I'TE. _cong | -.6009747  .2274986 -2.64 D.00B -1.046934  -.1550159
vif
variable | VIF 1/VIF || Ezsg 7]
_____________ +_____________________________________
wka | 24.62 0.040613 || 0.955387
wk3 | 10.88 0.091905 || 0.908095
wkl | g.79 0.113804 || 0.886196
_____________ +_____________________________________
Mean VIF | 14.78



Endogeneity (Omitted Variable Bias/Impact)

Endogeneity: As discussed previously, estimated coefficients will be biased (or less
pejoratively, impacted) to the extent that those variables are correlated with omitted variables,
which are themselves correlated with the dependent variable.

Misleading? And as also discussed earlier, this is not so much a bias as a matter of
interpretation. The estimated coefficients reflect the average incremental relationship
between changes in the particular RHS variable and changes in the LHS variable, controlling
for all the other RHS variables in the model. But of course, if a RHS variable is
omitted/dropped/excluded from the model, it's not the same model... and so no one should be
surprised to see changes in the OLS/MLR coefficient estimates for the surviving variables.

LHS var:y RHS var: x

Omitted var: z




Endogeneity - Casel: k=2tok=1

e The Omitted Variable Bias/Impact (OVB) on the estimated wk1 coefficent (when wk2 is dropped
from the Full Model) is the product of:

= Collinearity Regression (SLR): the estimated wk1 coefficient in the collinearity regression of
the omitted variable, wk2, on the surviving variable, wk1, and

= Full Model (MLR): the estimated wk2 coefficient in the full model.

Full Model wk2 dropped Collinearity Eeg
(1) (2) (3)
rtotaross rtotaross Wk2

Wk 1!EIEE=ﬁPi
(Tt

cons 0.401 4.433%%% 0.BEO***
(1.74) (13.83) (17.75)

N 95114 9114 9114

R-sg 0.887 0.773 0.873

t =tatistics in parentheses
* p<0.05, *% p<0.01, *&% pJ0.001



Endogeneity - Case | cont'd

Full Model - SRFy: 3= 3+ 5.x+ .z

Collinearity Regression - SRF;: ? =&, +d x (the omitted variable. z, 1s regressed on the surviving

variable, x)

Omitted Variable Bias (dropping z; impact on the x coeff - & ﬁ’}

f3. from the MLR Full Model (SRF,)

¢, from the SLR Collinearity

-, . -,

Regression (SREE:) B =0 £.=0 G <0
a, =0 positive 0 negative
a, =0 0 0 0

c, <0 negative 0 positive




Endogeneity - Case Ill: k> 2 to k-1 (What’s the difference?)

Full Model: This model includes the third explanatory variable, w, which will be dropped:
e Full Model - SRFy: § =4, +B.x+B,2+B,W

Collinearity Regression: As before, you also run the collinearity regression, regressing the omitted
variable, w, on the two surviving/remaining variables in the model, x and z:

o Collinearity Regression - SRFw: W=, +a, X+,

Then the omitted variable biases/impacts from excluding w from the model are the same sorts of
products of coefficients that you saw before:

OVB =, ﬁw (the product of the SRFw x coeff and the SRFy w coeff)

OVB, =q, ﬁw (the product of the SRFw z coeff and the SRFy w coeff)



Endogeneity - Case Il: Computing OVB

Full Model wk3 dropped

Collinearity Reqg

(1) (2] (3)
rtugﬁrnss rtﬂtgxuss wk3
wkl -H
1 i—3d. 42
wka -‘m**
I:l-\_- L]
wk3
COns D.Z237#+=*
(B.91)
N 7730 71730 T30
R—;a 0.5821 {.B34 0.49048

t =tatistics in parentheses
* p<0.05, ** p<0.01, #*=** p<0.001

Applyving the formulas above, we estimate the omitted variable biases using the product of the wis
coefficient in Model (1), 4. 778, and the respective EHS variable coefficients in the collinearity

regression, Model (3):
o wklOVB: 4778 * (-0.115) =-.549, as advertizsed

wk2 OVB: 4778 * (0.792) = 3784, almost as advertised._. blame rounding error 1



Endogeneity - Case IlI: Signing OVB

OVBX = aAXﬁW

e ¢ isthe x coeff in the collinearity reg when the omitted variable w is regressed on the other RHS vars
= ... the slope coeff when WhatsLeft, is regressed on WhatsNewy

=  And sign(a,) = sign(p,... ), where p . . is the partial correlation of w and x

e

B, 1s the w coeff. in the Full Model, when y is regressed on all of the RHS variables
= ... the slope coeff when WhatsLefty is regressed on WhatsNew
= And sign(g,) = sign(pyw ), where Py IS the partial correlation of y and w

A, from the MLR Full Model

¢, (from the MLR Collinearity

n,

o,

o,

Regression with w on the LHS) B >0.p e 0] A =0p N 0| Bo<0:p v 0
&, =0 p.. =0 positive 0 negative
&, =0.p,..=0 0 0 0
&, <0 p..<0 negative 0 positive




Simple v. Partial Correlations

(1) (2) (1) (2)
Brozek Brozek rtotgross rtotgross
wgt O0.1p2%** -0.136**% k1 2.3b4%** -0.0120
(12.27) (—=7.08) (176.20) (—-0.486)

abd 0.915%%* -2 4 BE3gp***k
(17.42) (95.87)
_cons -9.995%%% —-41.35***  cons 4. 433%*% 0.401
(—4.18) (—17.14) (13.83) (1.74)
N 252 252 N 9114 9114

Note that the signs of the slope coefficients in the SLR models will agree with the signs of the
pairwise correlations. Blame multicollinearity!

e Box Office Revenues: wkl and wk2

wk1 revenues are positively correlated with total box office revenues but wk1 has a negative
coefficient in the MLR model that includes wk2 (left).

e Bodyfat: wgtand abd

wgt is positively correlated with the Brozek measure of bodyfat ( so wgt has a positive slope
coeffcient in the SLR model), but wgt has a negative coeffcient in the MLR model that
includes abd (waist size) (right).



OLS/MLR Analytics Il: TakeAways

Collinearity of RHS variables can cause problems in MLR models, including: endogeneity (omitted variable
bias/impact), misinterpretation of estimated effects, increased standard errors and less precise estimation, and
misleading wacky coefficients

Collinearity regressions: When one RHS variable is regressed on the other RHS variables. The R-sq in that
regression provides a measure of collinearity, which we often label Rj2 and which is a logical extension of the

pairwise concept of correlation.

R]-Zs can easily be generated using Variance Inflation Factors (vifs): Rj2 = 1-1/vif;

OVB when dropping one RHS variable from the Full Model. The magnitude of OVB wrt a surviving variable is
the product of two OLS coefficients:

» the estimated coefficient for the omitted variable in the Full Model, and

 the estimated coefficient for the surviving variable in the collinearity regression (with the omitted variable on the LHS)
Those MLR coefficients can also be derived using SLR models in which WhatsLeft is regressed on WhatsNew
Knowing partial correlations will enable us to sign those estimated (MLR) coefficients and OVB

OVB when dropping more than one RHS variable from the Full Model: Complicated




onwards... to Stats Review
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